Reviewing Material-Sensitive Computed Tomography: From Handcrafted Algorithms to Modern Deep Learning

Author:

Weiss Moritz1ORCID,Meisen Tobias1ORCID

Affiliation:

1. Institute for Technologies and Management of Digital Transformation, University of Wuppertal, 42119 Wuppertal, Germany

Abstract

Computed tomography (CT) is a widely utilised imaging technique in both clinical and industrial applications. CT scan results, presented as a volume revealing linear attenuation coefficients, are intricately influenced by scan parameters and the sample’s geometry and material composition. Accurately mapping these coefficients to specific materials is a complex task. Traditionally, material decomposition in CT relied on classical algorithms using handcrafted features based on X-ray physics. However, there is a rising trend towards data-driven approaches, particularly deep learning, which offer promising improvements in accuracy and efficiency. This survey explores the transition from classical to data-driven approaches in material-sensitive CT, examining a comprehensive corpus of literature identified through a detailed and reproducible search using Scopus. Our analysis addresses several key research questions: the origin and generation of training datasets, the models and architectures employed, the extent to which deep learning methods reduce the need for domain-specific expertise, and the hardware requirements for training these models. We explore the implications of these findings on the integration of deep learning into CT practices and the potential reduction in the necessity for extensive domain knowledge. In conclusion, this survey highlights a significant shift towards deep learning in material-resolving CT and discusses the challenges and opportunities this presents. The transition suggests a future where data-driven approaches may dominate, offering enhanced precision and robustness in material-resolving CT while potentially transforming the role of domain experts in the field.

Publisher

MDPI AG

Reference57 articles.

1. Sir Godfrey Hounsfield;Richmond;BMJ,2004

2. Nobel Prize Outreach (2024, May 21). The Nobel Prize in Physiology or Medicine 1979. Available online: https://www.nobelprize.org/prizes/medicine/1979/press-release/.

3. Practical Cone-Beam Algorithm;Feldkamp;J. Opt. Soc. Am. A,1984

4. A Survey on Deep Learning and Its Applications;Dong;Comput. Sci. Rev.,2021

5. Ofir, N., and Nebel, J.C. (2021). Classic versus Deep Learning Approaches to Address Computer Vision Challenges. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3