Affiliation:
1. Department of Industrial Engineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
Abstract
As technologies for storing time-series data such as smartwatches and smart factories become common, we are collectively accumulating a great deal of time-series data. With the accumulation of time-series data, the importance of time-series abnormality detection technology that detects abnormal patterns such as Cyber-Intrusion Detection, Fraud Detection, Social Networks Anomaly Detection, and Industrial Anomaly Detection is emerging. In the past, time-series anomaly detection algorithms have mainly focused on processing univariate data. However, with the development of technology, time-series data has become complicated, and corresponding deep learning-based time-series anomaly detection technology has been actively developed. Currently, most industries rely on deep learning algorithms to detect time-series anomalies. In this paper, we propose an anomaly detection algorithm with an ensemble of multi-point LSTMs that can be used in three cases of time-series domains. We propose our anomaly detection model that uses three steps. The first step is a model selection step, in which a model is learned within a user-specified range, and among them, models that are most suitable are automatically selected. In the next step, a collected output vector from M LSTMs is completed by stacking ensemble techniques of the previously selected models. In the final step, anomalies are finally detected using the output vector of the second step. We conducted experiments comparing the performance of the proposed model with other state-of-the-art time-series detection deep learning models using three real-world datasets. Our method shows excellent accuracy, efficient execution time, and a good F1 score for the three datasets, though training the LSTM ensemble naturally requires more time.
Funder
National Research Foundation of Korea
Korea Institute of Energy Technology Evaluation and Planning
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. LLA:Line Loss Anomalies Detection of Substation Areas Based on BACC Dual-Channel;2024 7th International Conference on Energy, Electrical and Power Engineering (CEEPE);2024-04-26