Global and Regional Snow Cover Decline: 2000–2022

Author:

Young Stephen S.1

Affiliation:

1. Geography and Sustainability Department, Salem State University, Salem, MA 01970, USA

Abstract

Snow cover affects the global surface energy balance and, with its high albedo, exerts a cooling effect on the Earth’s climate. Decreases in snow cover alter the flow of solar energy from being reflected away from Earth to being absorbed, increasing the Earth’s surface temperature. To gain a global understanding of snow cover change, in situ measurements are too few and far between, so remotely sensed data are needed. This research used the medium-resolution sensor MODIS on the Terra satellite, which has been observing global snow cover almost daily since the year 2000. Here, the MOD10C2 eight-day maximum value composite time series data from February 2000 to March 2023 were analyzed to detect global and regional trends in snow cover extent for the first 23 years of the 21st century. Trends in snow cover change during different time periods (seasons and snow-year) were examined using the Mann—Kendall test and the univariate differencing analysis. Both methods produced similar results. Globally, snow cover declined two to ten times as much as it increased, depending on the season of analysis, and annually, global snow cover decreased 5.12% (not including Antarctica or Greenland) based on the Mann—Kendall test at the 95th percentile (p < 0.05). Regionally, Asia had the greatest net area decline in snow cover, followed by Europe. Although North America has the second-largest extent of snow cover, it had the least amount of net decreasing snow cover relative to its size. South America had the greatest local decline in snow cover, decreasing 20.60% of its annual (snow-year) snow cover area. The Australia–New Zealand region, with just 0.34% of the global snow cover, was the only region to have a net increase in snow cover, increasing 3.61% of its annual snow cover area.

Publisher

MDPI AG

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3