Abstract
Artificial intelligence methods can remarkably reduce costs for water supply and sanitation systems and help ensure compliance with the quality of drinking and wastewater treatment. Therefore, modelling and predicting water quality to control water pollution has been widely researched. The novelty of the proposed system is presented to develop an efficient operation of monitoring drinking water to ensure a sustainable and friendly green environment. In this work, the adaptive neuro-fuzzy inference system (ANFIS) algorithm was developed to predict the water quality index (WQI). Feed-forward neural network (FFNN) and K-nearest neighbors were applied to classify water quality. The dataset has eight significant parameters, but seven parameters were considered to show significant values. The proposed methodology was developed based on these statistical parameters. Prediction results demonstrated that the ANFIS model was superior for the prediction of WQI values. Nevertheless, the FFNN algorithm achieved the highest accuracy (100%) for water quality classification (WQC). Furthermore, the ANFIS model accurately predicted WQI, and the FFNN model showed superior robustness in classifying the WQC. In addition, the ANFIS model showed accuracy during the testing phase, with a regression coefficient of 96.17% for predicting WQI, and the FFNN model achieved the highest accuracy (100%) for WQC. This proposed method, using advanced artificial intelligence, can aid in water treatment and management.
Funder
Deanship of Scientific Research, King Faisal University
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
114 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献