A Novel Index (RI) to Evaluate the Relative Stability of Soils Using Ultrasonic Agitation

Author:

Abbas Fakher,Lin Fang,Zhu Zhaolong,An Shaoshan

Abstract

As soil stability is a complex phenomenon, various methods and indexes were introduced to assess the strength of soils. Because of the limitations of different stability methods and indexes (including wet sieving-based), we aimed to presents a relative stability index (RI) that was based on the estimated components of the soil overall disruptive characteristic curve (SODC): (1) soil disruption constant (Ki, that is based upon dispersion energy of soils); (2) resulting change in mean weight diameter (ΔMWD). To evaluate the effectiveness and limitations of RI as well as to compare it with classical soil stability indexes of mean weight diameter (MWD) and geometric mean diameter (GMD). Ultrasonic agitation (UA) along with a wet sieving method (followed by dry sieving) was applied against four different soils named on the basis of sample location, Qingling soil (QL), Guanzhong soil (GZ), Ansai soil (AS), and Jingbian soil (JB). To evaluate the relative strength of soils at different applied energies (increase in sonication duration usually resulted in increased input energy and temperature of soil–water suspension), soils were subjected to six sonication durations (0, 30, 60, 120, 210, and 300 s) with a fixed (and exact) initial amplitude and temperature. Output energy was calculated based on the amplitude and temperature of the suspension, vessel, and system. The most abrupt and maximum disruption of soil aggregates was observed at a dispersion energy level of 0–200 J g−1. The MWD value of surface and subsurface ranged between 0.58 to 0.15 mm and 0.37 to 0.17 mm, respectively, while GMD was ranged from 0.14 to 0.33 mm overall. The results for MWD and GMD showed a similar trend. MWD and GMD showed more strong associations with physicochemical characteristics of soil than RI. A non-significant correlation was found between RI and MWD/GMD. Contrary to MWD and GMD, RI was significantly positively correlated with sand content; this finding indicated the influential role of sand in assessing the soil’s relative strength. The results indicated that JB soil possessed the least MWD and GMD but proved to be relatively stable because of having the highest RI value.

Funder

natural science foundation of china

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference36 articles.

1. Disruptive methods for assessing soil structure

2. Influence of vibration amplitude on the ultrasonic dispersion of soils;Mayer;Int. Agrophysics,2001

3. Characterization of soil aggregate stability using low intensity ultrasonic vibrations;Schomakers;Int. Agrophysics,2011

4. Measurement of soil aggregate stability using low intensity ultrasonic vibration

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3