Abstract
A novel high-speed 3D shape measurement technology called temporal Fourier transform profilometry (TFTP for short) is proposed by combining the merits of Fourier transform profilometry (FTP) and phase-measuring profilometry (PMP). Instead of using the digital light projector, a mechanical projector is employed to generate multi-period phase-shifting fringe patterns sequentially. During the reconstruction process, the phase value of each pixel is calculated independently along the temporal axis and no spectrum filtering operation is performed in a spatial domain. Therefore, high-frequency components containing the detailed information of the measured object effectively remain. The proposed method is suitable for measuring isolated dynamic objects. Only one frame of deformed fringe pattern is required to retrieve one 3D shape of the measured object, so it has the obvious advantage if measuring the dynamic scene at a high speed. A low-cost self-made mechanical projector with fast projection speed is developed to execute the principle-proof experiments, whose results demonstrate the feasibility of measuring isolated dynamic objects.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献