Piezoelectric Composite Vibrator with a Bilaminated Structure for Bending Vibration

Author:

Liu XiaORCID,Wang Likun,Zhong Chao,Zhang Yanjun,Hao Shaohua,Sun Ruiqing

Abstract

A piezoelectric composite vibrator with a bilaminated structure is designed and fabricated, in this work by applying bending vibration to increase vibration displacement and reduce resonance frequency. The finite element software ANSYS (ANSYS, Inc. USA) is used to simulate the 2-2 and 1-3 piezoelectric composite bilaminated vibrators under free boundary condition and optimize their design. Simulation results show that the vibration displacement of the 2-2 vibrator is higher than that of the 1-3 vibrator, and the resonance frequency of the former is lower than the latter. Five pieces each of the 2-2 and piezoelectric ceramic vibrators are prepared. In addition, simulation and experimental results indicate that the vibration displacement of the 2-2 vibrator increases by 2.3 times, whereas its resonance frequency decreases by nearly 100 Hz, in comparison with those of the piezoelectric ceramic bilaminated vibrator.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference43 articles.

1. Theory of the Piezoelectric Flexural DISK Transducer with Applications to Underwater Sound;Woollett,1960

2. The energy method for analyzing the piezoelectric electroacoustic transducers. II. (With the examples of the flexural plate transducer)

3. Nonuniform piezoelectric circular plate flexural transducers with underwater applications

4. Analysis and calculation on receiving characteristics of the bimorph flexural transducers;Jinduo;Tech. Acoust.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3