Three-Phase-Based Approach to Develop a River Health Prediction and Early Warning System to Guide River Management

Author:

Chen Yongming,Xia Jihong,Cai Wangwei,Sun Zhilin,Dou Chuanbing

Abstract

To effectively manage a river system, systematic tracking and diagnosing the change and risks of a river system are essentially required to efficiently conserve or restore its conditions. Hence, this study focuses on how to integrate current status assessment, trend prediction, and cause diagnosis in river health to guide early warning decision-making in river protection and management. This study has presented a three-phase approach by coupling spatial with nonspatial information in a highly systematic and reliable way, and an early warning system has been designed. In phase I, the current health status is assessed and nowcasted by using the order degree of each indicator. In phase II, health predictors, including the single perspective-based health index (HI) (e.g., water quality index (WQI) and index of biotic integrity (IBI)) and multi-perspective-based health index, have been forecasted under normal conditions or emerging conditions using predictive models. In phase III, key causal factors threatening the river health have been identified to enable early notification and to address unexpected events before occurrence. Although different modeling methods can be used in each phase to demonstrate this concept, we tested the model of partial least square regression (PLSR) associated with time series. Additionally, the three-phase approach has been integrated with geographic information system (GIS) and a decision support system (DSS) to develop a river health prediction and early warning system (RHP-EWS), an automatic prediction and decision-making tool. This tool was implemented to deal with the landing of typhoon “Maria” in 2018 into the Shanxi River watershed in China. Because of the timely responses and decisions, the drinking water supply was not influenced. However, the models should be extended to other river systems for testing and improvement at different temporal or spatial scales.

Funder

Nation Key Research and Development Plan, China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aqua Status Prediction Using IoT and Optimization in Aquaculture: A Comprehensive Review;2024 MIT Art, Design and Technology School of Computing International Conference (MITADTSoCiCon);2024-04-25

2. Construction and Application of a Seasonal River Health Evaluation System in Arid and Semi-Arid Areas;Water;2024-02-27

3. A Multi-factor Water Quality Prediction Method Based on Wavelet Transform and LSTM;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

4. Wavelet Decomposition and Seq2Seq Hybrid Models for Water Quality Prediction;Water Resources;2022-07-18

5. River Health Assessment Method Based on Water Quality Indices for the Dagujia River in China;Frontiers in Physics;2022-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3