Pedestrian Attributes Recognition in Surveillance Scenarios Using Multi-Task Lightweight Convolutional Neural Network

Author:

Yan Pu,Zhuo Li,Li JiafengORCID,Zhang Hui,Zhang JingORCID

Abstract

Pedestrian attributes (such as gender, age, hairstyle, and clothing) can effectively represent the appearance of pedestrians. These are high-level semantic features that are robust to illumination, deformation, etc. Therefore, they can be widely used in person re-identification, video structuring analysis and other applications. In this paper, a pedestrian attributes recognition method for surveillance scenarios using a multi-task lightweight convolutional neural network is proposed. Firstly, the labels of the attributes for each pedestrian image are integrated into a label vector. Then, a multi-task lightweight Convolutional Neural Network (CNN) is designed, which consists of five convolutional layers, three pooling layers and two fully connected layers to extract the deep features of pedestrian images. Considering that the data distribution of the datasets is unbalanced, the loss function is improved based on the sigmoid cross-entropy, and the scale factor is added to balance the amount of various attributes data. Through training the network, the mapping relationship model between the deep features of pedestrian images and the integration label vector of their attributes is established, which can be used to predict each attribute of the pedestrian. The experiments were conducted on two public pedestrian attributes datasets in surveillance scenarios, namely PETA and RAP. The results show that, compared with the state-of-the-art pedestrian attributes recognition methods, the proposed method can achieve a superior accuracy by 91.88% on PETA and 87.44% on RAP respectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference19 articles.

1. Pedestrian Attribute Recognition: A Survey;Wang;arXiv,2019

2. Attributes-Based Re-Identification;Layne,2014

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3