Estimating Soil Available Phosphorus Content through Coupled Wavelet–Data-Driven Models

Author:

Shiri JalalORCID,Keshavarzi AliORCID,Kisi OzgurORCID,Karimi Sahar MohsenzadehORCID,Karimi Sepideh,Nazemi Amir Hossein,Rodrigo-Comino JesúsORCID

Abstract

Soil phosphorus (P) is a vital but limited element which is usually leached from the soil via the drainage process. Soil phosphorus as a soluble substance can be delivered through agricultural fields by runoff or soil loss. It is one of the most essential nutrients that affect the sustainability of crops as well as the energy transfer for living organisms. Therefore, an accurate simulation of soil phosphorus, which is considered as a point source pollutant in elevated contents, must be performed. Considering a crucial issue for a sustainable soil and water management, an effective soil phosphorus assessment in the current research was conducted with the aim of examining the capability of five different wavelet-based data-driven models: gene expression programming (GEP), neural networks (NN), random forest (RF), multivariate adaptive regression spline (MARS), and support vector machine (SVM) in modeling soil phosphorus (P). In order to achieve this goal, several parameters, including soil pH, organic carbon (OC), clay content, and soil P data, were collected from different regions of the Neyshabur plain, Khorasan-e-Razavi Province (Northeast Iran). First, a discrete wavelet transform (DWT) was applied to the pH, OC, and clay as the inputs and their subcomponents were utilized in the applied data-driven techniques. Statistical Gamma test was also used for identifying which effective soil parameter is able to influence soil P. The applied methods were assessed through 10-fold cross-validation scenarios. Our results demonstrated that the wavelet–GEP (WGEP) model outperformed the other models with respect to various validations, such as correlation coefficient (R), scatter index (SI), and Nash–Sutcliffe coefficient (NS) criteria. The GEP model improved the accuracy of the MARS, RF, SVM, and NN models with respect to SI-NS (By comparing the SI values of the GEP model with other models namely MARS, RF, SVM, and NN, the outputs of GEP showed more accuracy by 35%, 30%, 40%, 50%, respectively. Similarly, the results of the GEP outperformed the other models by 3.1%, 2.3%, 4.3%, and 7.6%, comparing their NS values.) by 35%-3.1%, 30%-2.3%, 40%-4.3%, and 50%-7.6%, respectively.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3