Experimental and DEM Analysis on Secondary Crack Types of Rock-Like Material Containing Multiple Flaws Under Uniaxial Compression

Author:

Li YongORCID,Cai Weibing,Li Xiaojing,Zhu Weishen,Zhang Qiangyong,Wang Shugang

Abstract

To better understand the evolution of crack propagation in brittle rock mass, the particle velocity field evolution on both sides of secondary crack in rock-like materials (cement mortar specimens) with pre-existing parallel double flaws under uniaxial compression is analyzed based on the discrete element theory. By bringing in strain rate tensor, a new technique is proposed for quantifying the failure mechanism of cracks to distinguish the types and mechanical behaviors of secondary cracks between pre-existing parallel flaws. The research results show that the types and mechanical behaviors of secondary cracks are distinct at different axial loading stages and can be directly identified and captured through the presented approach. The relative motion trend between particles determines the types and mechanical behaviors of secondary cracks. Based on particles movement on both sides of secondary cracks between cracks, the velocity fields of particles can be divided into four types to further analyze the causes of different types of cracks. In different axial loading stages, the velocity field types of particles on both sides of cracks are continuously evolving. According to the particle velocity field analysis and the proposed novel way, the types of macroscopic cracks are not directly determined by the types of dominated micro-cracks. Under uniaxial compression, the particles between secondary cracks and pre-existing parallel flaws form a confined compressive member. Under the confinement of lateral particles, secondary cracks appear as shear cracks between pre-existing parallel flaws at the beginning stage of crack initiation.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3