Thermal Comfort-Based Personalized Models with Non-Intrusive Sensing Technique in Office Buildings

Author:

Lu SiliangORCID,Wang Weilong,Wang Shihan,Cochran Hameen Erica

Abstract

Heating, ventilation and air-conditioning (HVAC) systems play a key role in shaping the built environment. However, centralized HVAC systems cannot guarantee the provision of a comfortable thermal environment for everyone. Therefore, a personalized HVAC system that aims to adapt thermal preferences has drawn much more attention. Meanwhile, occupant-related factors like skin temperature have not had standardized measurement methods. Therefore, this paper proposes to use infrared thermography to develop individual thermal models to predict thermal sensations using three different feature sets with the random forest (RF) and support vector machine (SVM). The results have shown the correlation coefficients between clothing surface temperature and thermal sensation are 11% and 3% higher than those between skin temperature and thermal sensation of two subjects, respectively. With cross-validation, SVM with a linear kernel and penalty number of 1, as well as RF with 50 trees and the maximum tree depth of 3 were selected as the model configurations. As a result, the model trained with the feature set, consisting of indoor air temperature, relative humidity, skin temperature and clothing surface temperature, and with linear kernel SVM has achieved 100% recall score on test data of female subjects and 95% recall score on that of male subjects.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3