A Joint Training Model for Face Sketch Synthesis

Author:

Wan Weiguo,Lee Hyo JongORCID

Abstract

The exemplar-based method is most frequently used in face sketch synthesis because of its efficiency in representing the nonlinear mapping between face photos and sketches. However, the sketches synthesized by existing exemplar-based methods suffer from block artifacts and blur effects. In addition, most exemplar-based methods ignore the training sketches in the weight representation process. To improve synthesis performance, a novel joint training model is proposed in this paper, taking sketches into consideration. First, we construct the joint training photo and sketch by concatenating the original photo and its sketch with a high-pass filtered image of their corresponding sketch. Then, an offline random sampling strategy is adopted for each test photo patch to select the joint training photo and sketch patches in the neighboring region. Finally, a novel locality constraint is designed to calculate the reconstruction weight, allowing the synthesized sketches to have more detailed information. Extensive experimental results on public datasets show the superiority of the proposed joint training model, both from subjective perceptual and the FaceNet-based face recognition objective evaluation, compared to existing state-of-the-art sketch synthesis methods.

Funder

Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3