Addition of Carbonaceous Material to Aquatic Sediments for Sorption of Lindane and p,p’-Dichlorodiphenyldichloroethylene

Author:

Guo ZhiyongORCID,Chen Tianyi,Wang Xinzhou,Zhang Liwen,Wang Liting,Dong Deming,Hua Xiuyi

Abstract

Isomers of hexachlorocyclohexanes (HCHs) and metabolites of dichlorodiphenyltrichloroethanes (DDTs) are still frequently detected worldwide in considerable amounts, even decades after their prohibition. Carbonaceous materials (CMs) have been shown to significantly reduce risks of propagation to humans by binding the hydrophobic organochlorine pesticides (OCPs) present in aquatic sediments. In the present study, black carbons extracted from natural sediments, and artificially produced black carbons, including black carbons by burning rice straw at 450 and 850 °C, and a commercial activated carbon were compared to investigate the factors affecting the sorption of γ-HCH (lindane) and p,p’-dichlorodiphenyldichloroethylene (p,p’-DDE) on CMs. The results indicated that when the proportion of CMs to total organic carbon (ƒCM/ƒOC) was greater than 0.35, CMs played a leading role in the sorption of lindane and p,p’-DDE by the sediments. The sorption contribution rate of CMs could reach up to 64.7%. When the ratio of ƒCM/ƒOC was less than 0.10, CMs played a minor role in the sorption. In addition, the nonlinearity of the sorption isotherms was strengthened with the increasing the proportion of CMs to total organic carbon. Our findings show that ƒCM/ƒOC value is a principal parameter for assessing the sorption capacity of sediments added by CMs for OCPs.

Funder

National Natural Science Foundation of China

the 111 Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3