Author:
Mirzaei Ali,Kim Jae-Hun,Kim Hyoun Woo,Kim Sang Sub
Abstract
Hydrogen is one of the most important gases that can potentially replace fossil fuels in the future. Nevertheless, it is highly explosive, and its leakage should be detected by reliable gas sensors for safe operation during storage and usage. Most hydrogen gas sensors operate at high temperatures, which introduces the risk of hydrogen explosion. Gasochromic WO3 sensors work based on changes in their optical properties and color variation when exposed to hydrogen gas. They can work at low or room temperatures and, therefore, are good candidates for the detection of hydrogen leakage with low risk of explosion. Once their morphology and chemical composition are carefully designed, they can be used for the realization of sensitive, selective, low-cost, and flexible hydrogen sensors. In this review, for the first time, we discuss different aspects of gasochromic WO3 gas sensor-based hydrogen detection. Pristine, heterojunction, and noble metal-decorated WO3 nanostructures are discussed for the detection of hydrogen gas in terms of changes in their optical properties or visible color. This review is expected to provide a good background for research work in the field of gas sensors.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献