SURF-BRISK–Based Image Infilling Method for Terrain Classification of a Legged Robot

Author:

Zhu YaguangORCID,Jia Chaoyu,Ma Chao,Liu Qiong

Abstract

In this study, we propose adaptive locomotion for an autonomous multilegged walking robot, an image infilling method for terrain classification based on a combination of speeded up robust features, and binary robust invariant scalable keypoints (SURF-BRISK). The terrain classifier is based on the bag-of-words (BoW) model and SURF-BRISK, both of which are fast and accurate. The image infilling method is used for identifying terrain with obstacles and mixed terrain; their features are magnified to help with recognition of different complex terrains. Local image infilling is used to improve low accuracy caused by obstacles and super-pixel image infilling is employed for mixed terrain. A series of experiments including classification of terrain with obstacles and mixed terrain were conducted and the obtained results show that the proposed method can accurately identify all terrain types and achieve adaptive locomotion.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities, CHD

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3