Modification of Density Dependence and Habitat Filtering on Seedling Survival of Different Mycorrhizal-Type Tree Species in Temperate Forests

Author:

Li Jian1,Zhao Xiuhai12

Affiliation:

1. Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China

2. Jilin Provincial Academy of Forestry Sciences, Changchun 130013, China

Abstract

Conspecific negative density dependence (CNDD) and habitat filtering are critical to seedling survival. However, the relative importance of the two processes in affecting survival of seedlings with different types of mycorrhizae remains unclear. In this study, the effects of CNDD and habitat filtering on the survival of tree seedlings with different mycorrhizal types were investigated at different successional stages of a temperate forest in the Changbai Mountain Natural Reserve, Northeast China. Conspecific negative density dependence and habitat filtering significantly affected seedling survival. In the early successional stage, the interactions between conspecific neighbor tree density and light availability and soil properties significantly negatively affected survival of all species and arbuscular mycorrhizal (AM) seedlings in the community, but not that of ectomycorrhizal (EcM) seedlings, and the CNDD effect was stronger on AM seedlings than on EcM seedlings. In the mid-successional stage, CNDD effects were stronger on EcM seedlings. Therefore, different types of mycorrhizal seedlings responded differently to CNDD and habitat filtering mechanisms during community succession, and thus, tree mycorrhizal association could determine the effects of CNDD and habitat filtering on seedling survival in temperate forests.

Funder

The Key Project of National Key Research and Development Plan

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3