Automatic Detection of Abnormal EEG Signals Using WaveNet and LSTM

Author:

Albaqami Hezam12ORCID,Hassan Ghulam Mubashar1ORCID,Datta Amitava1ORCID

Affiliation:

1. Department of Computer Science and Software Engineering, The University of Western Australia, Perth 6009, Australia

2. Department of Computer Science and Artificial Intelligence, University of Jeddah, Jeddah 201589, Saudi Arabia

Abstract

Neurological disorders have an extreme impact on global health, affecting an estimated one billion individuals worldwide. According to the World Health Organization (WHO), these neurological disorders contribute to approximately six million deaths annually, representing a significant burden. Early and accurate identification of brain pathological features in electroencephalogram (EEG) recordings is crucial for the diagnosis and management of these disorders. However, manual evaluation of EEG recordings is not only time-consuming but also requires specialized skills. This problem is exacerbated by the scarcity of trained neurologists in the healthcare sector, especially in low- and middle-income countries. These factors emphasize the necessity for automated diagnostic processes. With the advancement of machine learning algorithms, there is a great interest in automating the process of early diagnoses using EEGs. Therefore, this paper presents a novel deep learning model consisting of two distinct paths, WaveNet–Long Short-Term Memory (LSTM) and LSTM, for the automatic detection of abnormal raw EEG data. Through multiple ablation experiments, we demonstrated the effectiveness and importance of all parts of our proposed model. The performance of our proposed model was evaluated using TUH abnormal EEG Corpus V.2.0.0. (TUAB) and achieved a high classification accuracy of 88.76%, which is higher than in the existing state-of-the-art research studies. Moreover, we demonstrated the generalization of our proposed model by evaluating it on another independent dataset, TUEP, without any hyperparameter tuning or adjustment. The obtained accuracy was 97.45% for the classification between normal and abnormal EEG recordings, confirming the robustness of our proposed model.

Funder

a scholarship from the University of Jeddah

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3