Space Environmental Chamber for Planetary Studies

Author:

Vakkada Ramachandran AbhilashORCID,Nazarious Miracle IsraelORCID,Mathanlal Thasshwin,Zorzano María-Paz,Martín-Torres JavierORCID

Abstract

We describe a versatile simulation chamber that operates under representative space conditions (pressures from < 10−5 mbar to ambient and temperatures from 163 to 423 K), the SpaceQ chamber. This chamber allows to test instrumentation, procedures, and materials and evaluate their performance when exposed to outgassing, thermal vacuum, low temperatures, baking, dry heat microbial reduction (DHMR) sterilization protocols, and water. The SpaceQ is a cubical stainless-steel chamber of 27,000 cm3 with a door of aluminum. The chamber has a table which can be cooled using liquid nitrogen. The chamber walls can be heated (for outgassing, thermal vacuum, or dry heat applications) using an outer jacket. The chamber walls include two viewports and 12 utility ports (KF, CF, and Swagelok connectors). It has sensors for temperature, relative humidity, and pressure, a UV–VIS–NIR spectrometer, a UV irradiation lamp that operates within the chamber as well as a stainless-steel syringe for water vapor injection, and USB, DB-25 ports to read the data from the instruments while being tested inside. This facility has been specifically designed for investigating the effect of water on the Martian surface. The core novelties of this chamber are: (1) its ability to simulate the Martian near-surface water cycle by injecting water multiple times into the chamber through a syringe which allows to control and monitor precisely the initial relative humidity inside with a sensor that can operate from vacuum to Martian pressures and (2) the availability of a high-intensity UV lamp, operating from vacuum to Martian pressures, within the chamber, which can be used to test material curation, the role of the production of atmospheric radicals, and the degradation of certain products like polymers and organics. For illustration, here we present some applications of the SpaceQ chamber at simulated Martian conditions with and without atmospheric water to (i) calibrate the ground temperature sensor of the Engineering Qualification Model of HABIT (HabitAbility: Brines, Irradiation and Temperature) instrument, which is a part of ExoMars 2022 mission. These tests demonstrate that the overall accuracy of the temperature retrieval at a temperature between −50 and 10 °C is within 1.3 °C and (ii) investigate the curation of composite materials of Martian soil simulant and binders, with added water, under Martian surface conditions under dry and humid conditions. Our studies have demonstrated that the regolith, when mixed with super absorbent polymer (SAP), water, and binders exposed to Martian conditions, can form a solid block and retain more than 80% of the added water, which may be of interest to screen radiation while maintaining a low weight.

Funder

Kempestiftelserna

Knut och Alice Wallenbergs Stiftelse

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3