Investigation of Coatings, Corrosion and Wear Characteristics of Machined Biomaterials through Hydroxyapatite Mixed-EDM Process: A Review

Author:

Al-Amin MdORCID,Abdul-Rani Ahmad MajdiORCID,Danish MohdORCID,Rubaiee SaeedORCID,Mahfouz Abdullah bin,Thompson Harvey M.,Ali Sadaqat,Unune Deepak RajendraORCID,Sulaiman Mohd Hafis

Abstract

Together, 316L steel, magnesium-alloy, Ni-Ti, titanium-alloy, and cobalt-alloy are commonly employed biomaterials for biomedical applications due to their excellent mechanical characteristics and resistance to corrosion, even though at times they can be incompatible with the body. This is attributed to their poor biofunction, whereby they tend to release contaminants from their attenuated surfaces. Coating of the surface is therefore required to mitigate the release of contaminants. The coating of biomaterials can be achieved through either physical or chemical deposition techniques. However, a newly developed manufacturing process, known as powder mixed-electro discharge machining (PM-EDM), is enabling these biomaterials to be concurrently machined and coated. Thermoelectrical processes allow the migration and removal of the materials from the machined surface caused by melting and chemical reactions during the machining. Hydroxyapatite powder (HAp), yielding Ca, P, and O, is widely used to form biocompatible coatings. The HAp added-EDM process has been reported to significantly improve the coating properties, corrosion, and wear resistance, and biofunctions of biomaterials. This article extensively explores the current development of bio-coatings and the wear and corrosion characteristics of biomaterials through the HAp mixed-EDM process, including the importance of these for biomaterial performance. This review presents a comparative analysis of machined surface properties using the existing deposition methods and the EDM technique employing HAp. The dominance of the process factors over the performance is discussed thoroughly. This study also discusses challenges and areas for future research.

Funder

FRGS

Publisher

MDPI AG

Subject

General Materials Science

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of electrical discharge machining (EDM) bath composition on long-term corrosion of Ti-6Al-4V in simulated body fluid;Electrochimica Acta;2024-11

2. Magnesium based implants: Alloying and coating strategies for improvement in its biomechanical and biocorrosion properties;Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications;2024-08-29

3. Bioactivity and corrosion analysis of thermally sprayed hydroxyapatite based coatings;Journal of Electrochemical Science and Engineering;2024-08-02

4. Study on the NHAP-PMEDM-milling process of 316 L steel;The International Journal of Advanced Manufacturing Technology;2024-06-28

5. Effects of Porosity and Boron Reinforcement in AISI 316L Stainless Steel for Biomedical Applications;Fırat Üniversitesi Mühendislik Bilimleri Dergisi;2024-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3