Tribochemical Interactions between Graphene and ZDDP in Friction Tests for Uncoated and W-DLC-Coated HS6-5-2C Steel

Author:

Kowalczyk Joanna,Madej MonikaORCID,Dzięgielewski Wojciech,Kulczycki AndrzejORCID,Żółty Magdalena,Ozimina Dariusz

Abstract

If a lubricant contains structures capable of conducting energy, reactions involving zinc dialkyldithiophosphate (ZDDP) may take place both very close to and away from the solid surfaces, with this indicating that ZDDP can be a highly effective anti-wear (AW) additive. The central thesis of this article is that the tribocatalytic effect is observed only when the energy emitted by the solids is transmitted by ordered molecular structures present in the lubricant, e.g., graphene. The friction tests were carried out for 100Cr6 steel balls in a sliding contact with uncoated or W-DLC-coated HS6-5-2C steel discs in the presence of polyalphaolefin 8 (PAO 8) as the lubricant, which was enhanced with graphene and/or ZDDP. There is sufficient evidence of the interactions occurring between ZDDP and graphene and their effects on the tribological performance of the system. It was also found that the higher the concentration of zinc in the wear area, the lower the wear. This was probably due to the energy transfer resulting from the catalytic decomposition of ZDDP molecules. Graphene, playing the role of the catalyst, contributed to that energy transfer.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3