Enhancement of Magnetic and Tensile Mechanical Performances in Fe-Based Metallic Microwires Induced by Trace Ni-Doping

Author:

Zhang Mingwei,Qu Guanda,Liu Jingshun,Pang Mengyao,Wang Xufeng,Liu Rui,Cao Guanyu,Ma Guoxi

Abstract

Herein, the effect of Ni-doping amount on microstructure, magnetic and mechanical properties of Fe-based metallic microwires was systematically investigated further to reveal the influence mechanism of Ni-doping on the microstructure and properties of metallic microwires. Experimental results indicate that the rotated-dipping Fe-based microwires structure is an amorphous and nanocrystalline biphasic structure; the wire surface is smooth, uniform and continuous, without obvious macro- and micro-defects that have favorable thermal stability; and moreover, the degree of wire structure order increases with an increase in Ni-doping amount. Meanwhile, FeSiBNi2 microwires possess the better softly magnetic properties than the other wires with different Ni-doping, and their main magnetic performance indexes of Ms, Mr, Hc and μm are 174.06 emu/g, 10.82 emu/g, 33.08 Oe and 0.43, respectively. Appropriate Ni-doping amount can effectively improve the tensile strength of Fe-based microwires, and the tensile strength of FeSiBNi3 microwires is the largest of all, reaching 2518 MPa. Weibull statistical analysis also indicates that the fracture reliability of FeSiBNi2 microwires is much better and its fracture threshold value σu is 1488 MPa. However, Fe-based microwires on macroscopic exhibit the brittle fracture feature, and the angle of sideview fracture θ decreases as Ni-doping amount increases, which also reveals the certain plasticity due to a certain amount of nanocrystalline in the microwires structure, also including a huge amount of shear bands in the sideview fracture and a few molten drops in the cross-section fracture. Therefore, Ni-doped Fe-based metallic microwires can be used as the functional integrated materials in practical engineering application as for their unique magnetic and mechanical performances.

Funder

National Natural Science Foundation of China

Ministry of Education Fok Ying-tung Foundation for Young Teachers

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3