Predictive Modelling and Multi-Objective Optimization of Surface Integrity Parameters in Sustainable Machining Processes of Magnesium Alloy

Author:

Danish MohdORCID,Rubaiee Saeed,Ijaz Hassan

Abstract

Magnesium alloys are widely used in numerous engineering applications owing to their superior structural characteristics. However, the machining of magnesium alloy is challenging because of its poor machinability characteristics. Therefore, this paper investigates the machining of magnesium alloys under different sustainable cooling conditions. The machining was performed by varying cutting velocity, feed rate, and depth of cut under dry and cryogenic cooling conditions. The primary focus of the paper is to develop a predictive model for surface roughness under different machining environments. The models developed were found to be in excellent agreement with experimental results, with only 0.3 to 1.6% error. Multi-objective optimization were also performed so that the best surface finish together with high material removal rate could be achieved. Furthermore, the various parameters of surface integrity (i.e., surface roughness, micro-hardness, micro-structures, crystallite size, and lattice strain) were also investigated.

Funder

Deanship of Scientific Research

Publisher

MDPI AG

Subject

General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3