Development and Performance Evaluation of a High-Permeability and High-Bonding Fog-Sealing Adhesive Material

Author:

Tian Tian,Jiang Yingjun,Fan Jiangtao,Yi YongORCID,Deng ChangqingORCID

Abstract

Herein, the effects of the contents of emulsified asphalt, waterborne epoxy resin emulsion, and curing agent on the permeability, bond shear strength, water stability, and aging resistance of epoxy-emulsified asphalt were studied. A formulation of epoxy-emulsified asphalt as a fog-sealing adhesive material was recommended, and a comparison between the fabricated adhesive material and a traditional Chinese fog-sealing adhesive material was conducted to verify the technical performance of the new material. In addition, the strength formation mechanism of the epoxy-emulsified asphalt was revealed via microcosmic analysis. Results show that the curing agent content mainly affects the permeability of epoxy-emulsified asphalt, and the emulsified asphalt content significantly affects the bond shear strength, water stability, and aging resistance. Moreover, the ratio of waterborne epoxy resin emulsion to the curing agent (epoxy ratio) has a certain effect on the bond shear strength. In the recommended formulation (a high-permeability and high-bonding fog-sealing adhesive material, which can be referred to simply as HPBFA), emulsified asphalt accounts for 80% of the total mass of the mixture, and the epoxy ratio is 2:1–3:1. It can improve air permeability, bond shear strength, water stability and aging resistance. The HPBFA-cured material exhibits a continuous three-dimensional network structure, hydrophobic surface, and large contact angle. Furthermore, the initial thermal weight loss temperature of the HPBFA-cured material is significantly higher than the environmental aging temperature. Additionally, the maximum temperature decomposition range is 0–160 °C, indicating improved strength, wear resistance, permeability, and aging resistance of the material.

Funder

the scientific project from Henan Provincial Communication

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3