VV-YOLO: A Vehicle View Object Detection Model Based on Improved YOLOv4

Author:

Wang Yinan1,Guan Yingzhou1,Liu Hanxu1,Jin Lisheng2,Li Xinwei2,Guo Baicang2,Zhang Zhe2

Affiliation:

1. China FAW Corporation Limited, Global R&D Center, Changchun 130013, China

2. School of Vehicle and Energy, Yanshan University, Qinhuangdao 066000, China

Abstract

Vehicle view object detection technology is the key to the environment perception modules of autonomous vehicles, which is crucial for driving safety. In view of the characteristics of complex scenes, such as dim light, occlusion, and long distance, an improved YOLOv4-based vehicle view object detection model, VV-YOLO, is proposed in this paper. The VV-YOLO model adopts the implementation mode based on anchor frames. In the anchor frame clustering, the improved K-means++ algorithm is used to reduce the possibility of instability in anchor frame clustering results caused by the random selection of a cluster center, so that the model can obtain a reasonable original anchor frame. Firstly, the CA-PAN network was designed by adding a coordinate attention mechanism, which was used in the neck network of the VV-YOLO model; the multidimensional modeling of image feature channel relationships was realized; and the extraction effect of complex image features was improved. Secondly, in order to ensure the sufficiency of model training, the loss function of the VV-YOLO model was reconstructed based on the focus function, which alleviated the problem of training imbalance caused by the unbalanced distribution of training data. Finally, the KITTI dataset was selected as the test set to conduct the index quantification experiment. The results showed that the precision and average precision of the VV-YOLO model were 90.68% and 80.01%, respectively, which were 6.88% and 3.44% higher than those of the YOLOv4 model, and the model’s calculation time on the same hardware platform did not increase significantly. In addition to testing on the KITTI dataset, we also selected the BDD100K dataset and typical complex traffic scene data collected in the field to conduct a visual comparison test of the results, and then the validity and robustness of the VV-YOLO model were verified.

Funder

Major Scientific and Technological Special Projects in Jilin Province and Changchun City

National Natural Science Foundation of China

Hebei Natural Science Foundation

Science and Technology Project of Hebei Education Department

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3