A Preliminary Study on an Alternative Ship Propulsion System Fueled by Ammonia: Environmental and Economic Assessments

Author:

Kim KyunghwaORCID,Roh Gilltae,Kim WookORCID,Chun Kangwoo

Abstract

The shipping industry is becoming increasingly aware of its environmental responsibilities in the long-term. In 2018, the International Maritime Organization (IMO) pledged to reduce greenhouse gas (GHG) emissions by at least 50% by the year 2050 as compared with a baseline value from 2008. Ammonia has been regarded as one of the potential carbon-free fuels for ships based on these environmental issues. In this paper, we propose four propulsion systems for a 2500 Twenty-foot Equivalent Unit (TEU) container feeder ship. All of the proposed systems are fueled by ammonia; however, different power systems are used: main engine, generators, polymer electrolyte membrane fuel cell (PEMFC), and solid oxide fuel cell (SOFC). Further, these systems are compared to the conventional main engine propulsion system that is fueled by heavy fuel oil, with a focus on the economic and environmental perspectives. By comparing the conventional and proposed systems, it is shown that ammonia can be a carbon-free fuel for ships. Moreover, among the proposed systems, the SOFC power system is the most eco-friendly alternative (up to 92.1%), even though it requires a high lifecycle cost than the others. Although this study has some limitations and assumptions, the results indicate a meaningful approach toward solving GHG problems in the maritime industry.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference106 articles.

1. Greenhouse Gas Emissionshttp://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/GHG-Emissions.aspx

2. Decarbonising Maritime Transport Pathways to Zero-Carbon Shipping by 2035,2018

3. Sailing on Solar—Could Green Ammonia Decarbonise International Shipping;Ash,2019

4. Fuels Without Carbon - Prospects and the Pathway Forward for Zero-Carbon Hydrogen and Ammonia Fuels;Lewis,2018

5. The Future of Hydrogen—Seizing Today’s Opportunities,2019

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3