Mathematical Modeling for Neuropathic Pain: Bayesian Linear Regression and Self-Organizing Maps Applied to Carpal Tunnel Syndrome

Author:

Pellicer-Valero Oscar J.ORCID,Martín-Guerrero José D.ORCID,Cigarán-Méndez Margarita I.,Écija-Gallardo CarmenORCID,Fernández-de-las-Peñas CésarORCID,Navarro-Pardo EsperanzaORCID

Abstract

A better understanding of the connection between risk factors associated with pain and function may assist therapists in optimizing therapeutic programs. This study applied mathematical modeling to analyze the relationship of psychological, psychophysical, and motor variables with pain, function, and symptom severity using Bayesian linear regressions (BLR) and self-organizing maps (SOMs) in carpal tunnel syndrome (CTS). The novelty of this work was a transfer of the symmetry mathematical background to a neuropathic pain condition, whose symptoms can be either unilateral or bilateral. Duration of symptoms, pain intensity, function, symptom severity, depressive levels, pinch tip grip force, and pressure pain thresholds (PPTs) over the ulnar, radial, and median nerve trunks, the cervical spine, the carpal tunnel, and the tibialis anterior were collected in 208 women suffering from CTS. The first BLR model revealed that symptom severity, PPTs over the radial nerve, and function had significant correlations with pain intensity. The second BLR showed that symptom severity, depressive levels, pain intensity, and years with pain were associated with function. The third model demonstrated that pain intensity and function were associated with symptom severity. The SOMs visualized these correlations among variables, i.e., clinical, psychophysical, and physical, and identified a subgroup of women with CTS exhibiting worse clinical features, higher pressure sensitivity, and lower pinch tip grip force. Therefore, the application of mathematical modeling identified some interactions among the intensity of pain, function, and symptom severity in women with CTS.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3