Algebraic DVR Approaches Applied to Describe the Stark Effect

Author:

Bermúdez-Montaña MarisolORCID,Rodríguez-Arcos MarisolORCID,Lemus Renato,Arias José M.,Gómez-Camacho Joaquín,Orgaz Emilio

Abstract

Two algebraic approaches based on a discrete variable representation are introduced and applied to describe the Stark effect in the non-relativistic Hydrogen atom. One approach consists of considering an algebraic representation of a cutoff 3D harmonic oscillator where the matrix representation of the operators r2 and p2 are diagonalized to define useful bases to obtain the matrix representation of the Hamiltonian in a simple form in terms of diagonal matrices. The second approach is based on the U(4) dynamical algebra which consists of the addition of a scalar boson to the 3D harmonic oscillator space keeping constant the total number of bosons. This allows the kets associated with the different subgroup chains to be linked to energy, coordinate and momentum representations, whose involved branching rules define the discrete variable representation. Both methods, although originating from the harmonic oscillator basis, provide different convergence tests due to the fact that the associated discrete bases turn out to be different. These approaches provide powerful tools to obtain the matrix representation of 3D general Hamiltonians in a simple form. In particular, the Hydrogen atom interacting with a static electric field is described. To accomplish this task, the diagonalization of the exact matrix representation of the Hamiltonian is carried out. Particular attention is paid to the subspaces associated with the quantum numbers n=2,3 with m=0.

Funder

European Commission

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3