Abstract
In structural reliability analysis, sensitivity analysis (SA) can be used to measure how an input variable influences the failure probability Pf of a structure. Although the reliability is usually expressed via Pf, Eurocode building design standards assess the reliability using design quantiles of resistance and load. The presented case study showed that quantile-oriented SA can provide the same sensitivity ranking as Pf-oriented SA or local SA based on Pf derivatives. The first two SAs are global, so the input variables are ranked based on total sensitivity indices subordinated to contrasts. The presented studies were performed for Pf ranging from 9.35 × 10−8 to 1–1.51 × 10−8. The use of quantile-oriented global SA can be significant in engineering tasks, especially for very small Pf. The proposed concept provided an opportunity to go much further. Left-right symmetry of contrast functions and sensitivity indices were observed. The article presents a new view of contrasts associated with quantiles as the distance between the average value of the population before and after the quantile. This distance has symmetric hyperbola asymptotes for small and large quantiles of any probability distribution. Following this idea, new quantile-oriented sensitivity indices based on measuring the distance between a quantile and the average value of the model output are formulated in this article.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference59 articles.
1. Structural Reliability Methods;Ditlevsen,1996
2. Engineering Risk Assessment with Subset Simulation;Au,2014
3. Solving Civil Engineering Problems by Means of Fuzzy and Stochastic MCDM Methods: Current State and Future Research
4. EN 1990:2002: Eurocode—Basis of Structural Design,2002
5. Probabilistic Model Codehttps://www.jcss-lc.org/
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献