Supramolecular Diversity of Oxabicyclo[2.2.2]octenes Formed between Substituted 2H-Pyran-2-ones and Vinyl-Moiety-Containing Dienophiles

Author:

Kranjc Krištof,Juranovič Amadej,Kočevar Marijan,Perdih FrancORCID

Abstract

In Diels–Alder reactions, 2H-pyran-2-ones as dienes can yield a large variety of cycloadducts with up to four contiguous carbon stereogenic centers. Some of the potentially most useful, however difficult to prepare due to their low thermal stability, are the primary CO2-containing oxabicyclo[2.2.2]octenes, which could be formed as eight distinctive isomers (two sets of regioisomers, each of these composed of four different stereoisomers). A high-pressure synthesis of such products was recently described in a few cases where vinyl-moiety-containing dienophiles were used as synthetic equivalents of acetylene. However, structures of the primary products have been so far only rarely investigated in detail. Herein, we present seven novel single-crystal X-ray diffraction structures of such cycloadducts of both stereoisomeric forms, i.e., endo and exo. Additionally, we present a single-crystal structure of a rare case of a cyclohexadiene system stable at room temperature, obtained as a secondary product upon the retro-hetero-Diels–Alder elimination of CO2 under thermal conditions (microwave irradiation), during this elimination the symmetry is increased and out of eight initially possible isomers of the reactant, this number in the product is decreased to four. In oxabicyclo[2.2.2]octene compounds, centrosymmetric hydrogen bonding was found to be the predominant motif and diverse supramolecular patterns were observed due to rich variety of C–H⋯O and C–H⋯π interactions.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3