Diffusion-Limited Reaction Kinetics of a Reactant with Square Reactive Patches on a Plane

Author:

Eun Changsun

Abstract

We present a simple reaction model to study the influence of the size, number, and spatial arrangement of reactive patches on a reactant placed on a plane. Specifically, we consider a reactant whose surface has an N × N square grid structure, with each square cell (or patch) being chemically reactive or inert for partner reactant molecules approaching the cell via diffusion. We calculate the rate constant for various cases with different reactive N × N square patterns using the finite element method. For N = 2, 3, we determine the reaction kinetics of all possible reactive patterns in the absence and presence of periodic boundary conditions, and from the analysis, we find that the dependences of the kinetics on the size, number, and spatial arrangement are similar to those observed in reactive patches on a sphere. Furthermore, using square reactant models, we present a method to significantly increase the rate constant by sequentially breaking the patches into smaller patches and arranging them symmetrically. Interestingly, we find that a reactant with a symmetric patch distribution has a power–law relation between the rate constant and the number of reactive patches and show that this works well when the total reactive area is much less than the total surface area of the reactant. Since our N × N discrete models enable us to examine all possible reactive cases completely, they provide a solid understanding of the surface reaction kinetics, which would be helpful for understanding the fundamental aspects of the competitions between reactive patches arising in real applications.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3