On Optimization Techniques for the Construction of an Exponential Estimate for Delayed Recurrent Neural Networks

Author:

Martsenyuk VasylORCID,Rajba Stanislaw,Karpinski Mikolaj

Abstract

This work is devoted to the modeling and investigation of the architecture design for the delayed recurrent neural network, based on the delayed differential equations. The usage of discrete and distributed delays makes it possible to model the calculation of the next states using internal memory, which corresponds to the artificial recurrent neural network architecture used in the field of deep learning. The problem of exponential stability of the models of recurrent neural networks with multiple discrete and distributed delays is considered. For this purpose, the direct method of stability research and the gradient descent method is used. The methods are used consequentially. Firstly we use the direct method in order to construct stability conditions (resulting in an exponential estimate), which include the tuple of positive definite matrices. Then we apply the optimization technique for these stability conditions (or of exponential estimate) with the help of a generalized gradient method with respect to this tuple of matrices. The exponential estimates are constructed on the basis of the Lyapunov–Krasovskii functional. An optimization method of improving estimates is offered, which is based on the notion of the generalized gradient of the convex function of the tuple of positive definite matrices. The search for the optimal exponential estimate is reduced to finding the saddle point of the Lagrange function.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference18 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3