An Effective and Improved CNN-ELM Classifier for Handwritten Digits Recognition and Classification

Author:

Ali Saqib,Li Jianqiang,Pei YanORCID,Aslam Muhammad Saqlain,Shaukat ZeeshanORCID,Azeem MuhammadORCID

Abstract

Optical character recognition is gaining immense importance in the domain of deep learning. With each passing day, handwritten digits (0–9) data are increasing rapidly, and plenty of research has been conducted thus far. However, there is still a need to develop a robust model that can fetch useful information and investigate self-build handwritten digit data efficiently and effectively. The convolutional neural network (CNN) models incorporating a sigmoid activation function with a large number of derivatives have low efficiency in terms of feature extraction. Here, we designed a novel CNN model integrated with the extreme learning machine (ELM) algorithm. In this model, the sigmoid activation function is upgraded as the rectified linear unit (ReLU) activation function, and the CNN unit along with the ReLU activation function are used as a feature extractor. The ELM unit works as the image classifier, which makes the perfect symmetry for handwritten digit recognition. A deeplearning4j (DL4J) framework-based CNN-ELM model was developed and trained using the Modified National Institute of Standards and Technology (MNIST) database. Validation of the model was performed through self-build handwritten digits and USPS test datasets. Furthermore, we observed the variation of accuracies by adding various hidden layers in the architecture. Results reveal that the CNN-ELM-DL4J approach outperforms the conventional CNN models in terms of accuracy and computational time.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Groundwater fluoride prediction modeling using physicochemical parameters in Punjab, India: a machine-learning approach;Frontiers in Soil Science;2024-07-18

2. CNN Model for Handwritten Digit Recognition with Improved Accuracy and Performance Using MNIST Dataset;2023 4th International Conference on Intelligent Technologies (CONIT);2024-06-21

3. Denoising and segmentation in medical image analysis: A comprehensive review on machine learning and deep learning approaches;Multimedia Tools and Applications;2024-05-17

4. Handwritten Digits Recognition using Machine and Deep Learning;2024 11th International Conference on Computing for Sustainable Global Development (INDIACom);2024-02-28

5. Deep Learning Approaches for Textbook Recognition and Classification;2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2024-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3