Abstract
This paper presents a color-based classification system for grading the ripeness of fruit using a battery-less Near Field Communication (NFC) tag. The tag consists of a color sensor connected to a low-power microcontroller that is connected to an NFC chip. The tag is powered by the energy harvested from the magnetic field generated by a commercial smartphone used as a reader. The raw RGB color data measured by the colorimeter is converted to HSV (hue, saturation, value) color space. The hue angle and saturation are used as features for classification. Different classification algorithms are compared for classifying the ripeness of different fruits in order to show the robustness of the system. The low cost of NFC chips means that tags with sensing capability can be manufactured economically. In addition, nowadays, most commercial smartphones have NFC capability and thus a specific reader is not necessary. The measurement of different samples obtained on different days is used to train the classification algorithms. The results of training the classifiers have been saved to the cloud. A mobile application has been developed for the prediction based on a table-based method, where the boundary decision is downloaded from a cloud service for each product. High accuracy, between 80 and 93%, is obtained depending on the kind of fruit and the algorithm used.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献