Neotropical Biodiversity as Microbial Frontline for Obtaining Bioactive Compounds with Potential Insecticidal Action

Author:

Santos Maicon S. N.1,Ody Lissara P.1,Kerber Bruno D.1ORCID,Castro Isac A.2,de Villa Bruna3,Ugalde Gustavo A.4ORCID,Guedes Jerson V. C.4,Mazutti Marcio A.5ORCID,Zabot Giovani L.1ORCID,Tres Marcus V.1ORCID

Affiliation:

1. Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), Cachoeira do Sul 96503-205, RS, Brazil

2. Department of Soils, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil

3. Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil

4. Integrated Pest Management Laboratory (LabMIP), Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil

5. Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil

Abstract

The occurrence of insect pests in crops directly affects the yield of plants and grains. This scenario led to the mass investigation of chemical products that overcome these adversities and provide control potential. Nonetheless, over the years, this strategy resulted in high production costs, generation of waste harmful to the environment, and resistance of target insects. The adoption of alternative practices, such as the formulation and production of products of microbial origin, emerges as an encouraging tool compared to control alternatives, indicating a sustainability bias, and allowing a reduction in the risks of human and animal contamination. The purpose of this study was to perform bioprospecting for microbial agents with potential insecticidal effects. The isolated microorganisms were submitted to submerged fermentation, at 28 °C and 120 rpm, for seven days. The fermented broth was filtered using a vacuum pump and centrifuged at 3200× g and 10 °C for 10 min. Initially, 163 microbial agents were collected. Subsequently, a pre-selection of the 50 most promising bioagents was conducted, based on the mortality rates (%) of the applied isolates to target pests. Furthermore, a global mathematical modeling design was created, indicating the best potential microorganisms. Moreover, to stipulate the difference between treatments, dilutions of the fermented broths of each microorganism were conducted (n × 10−5–n × 10−8). Mortality was maximum (100%) for Helicoverpa zea and Euschistus heros. Other encouraging results were indicated in the control of Anticarsia gemmatalis and Chrysodeixis includens (up to 87.5%) and Elasmopalpus lignosellus (up to approximately 83.5%). Fungal isolates were identified as Talaromyces piceae. Among the bacteria, based on sequencing of the 16S ribosomal gene, the isolates were identified as Lysinibacillus fusiformis, Paenibacillus ottowii, and Clostridium sphenoides. The results obtained are relevant to the scientific community and, especially, are interesting for companies that are operating in this field in the agricultural sector.

Funder

National Council for Scientific and Technological Development

Research Support Foundation of the State of Rio Grande do Sul

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3