Green Synthesis of Yttrium Derivatives Nanoparticles Using Pine Needle Leaf Extract: Characterization, Docking, Antibacterial, and Antioxidant Potencies

Author:

Darwich Nourhane A.1ORCID,Mezher Malak1,Abdallah Alaa M.2,El-Sayed Ahmed F.34ORCID,El Hajj Rana1ORCID,Hamdalla Taymour A.5ORCID,Khalil Mahmoud I.16ORCID

Affiliation:

1. Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon

2. Department of Physics, Faculty of Science, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon

3. Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, Giza 12622, Egypt

4. Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt

5. Physics Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia

6. Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt

Abstract

Green nanoparticles are synthesized using environmentally friendly methods, and natural materials hold significant importance. This makes the process environmentally sustainable and reduces the production of harmful waste by-products. Green nanoparticles exhibit reduced toxicity which is crucial for biomedical applications. The current study suggested that yttrium nanoparticles (YNPs) should be synthesized, characterized, and evaluated for their diverse biological applications due to the rise in antibacterial resistance. The YNPs were prepared using a pine needle leaf extract (PNLE). The structural and morphological features have been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible spectroscopy (UV–vis), and vibrating sample magnetometry (VSM). The XRD pattern demonstrated the presence of yttrium oxide and yttrium nitrate phases. The crystallite size and particle size of the synthesized YNPs measured 1.696 nm and 24.55 nm, respectively. The XPS peaks showed two components with binding energies at 530.940 eV and 532.18 eV due to the bond between O–Y and OH–Y, respectively. Additionally, the ferromagnetic nature of the YNPs was confirmed by VSM analysis. The YNPs were tested for antibacterial activity on six uropathogenic bacteria (S. aureus, S. haemolyticus, E. faecalis, E. coli, K. pneumonia, and P. aeruginosa) using the microdilution assays, to find the minimum inhibitory concentration (MIC) as well as the minimum bactericidal concentration (MBC), the agar well diffusion assay, and antibiofilm screening assays, where they showed bacteriostatic action against all isolates (0.5–1 mg/mL MIC) and significant inhibition of biofilm formation (80% inhibition rate). The antioxidant capacity assessed by 1,1, diphenyl-2-picrylhydrazyl (DPPH) radical scavenging revealed 50% DPPH scavenging. Moreover, docking studies exhibited that YNPs inhibit crucial bacterial enzymes, including DNA gyrase, penicillin-binding proteins, carbapenemase, LasR-binding protein, and dihydropteroate synthase. These findings may explain the mechanisms responsible for the observed antibacterial effects of YNPs. Overall, these findings underscore YNPs as promising candidates for antioxidant and antibacterial applications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3