Selection and Optimization of China’s Energy Transformation Pathway Under Carbon-Neutral Targets

Author:

Qi Yingying1,Yu Guohua2ORCID

Affiliation:

1. School of Economics, Northwest Minzu University, Lanzhou 730030, China

2. College of Economics and Management, Southwest University, Chongqing 400715, China

Abstract

This paper uses a bottom-up national energy technology model to study the optimization of China’s energy transformation pathway. The model clarifies specific action plans for China’s energy transformation pathway from 2020 to 2060, total carbon emissions, industry emission reduction responsibilities, and other dimensions. The results show that: (1) The proportion of renewable energy consumption in China’s entire energy system from 2020 to 2060 will gradually exceed that of fossil energy under ideal circumstances, and the energy system will transition from traditional fossil energy to renewable energy. Meanwhile, the proportion of low-carbon energy sources, such as renewable energy, in primary energy demand will jump from 15.9% in 2020 to over 80% by 2060. (2) China’s CO2 emissions will be approximately 3 billion tons, 2 billion tons, and 1 billion tons under three different socio-economic development scenarios of low, medium, and high speed in 2060. At that time, China will still need to absorb CO2 through carbon sinks in forests, oceans, and wetlands. (3) The electricity industry has the highest CO2 emissions compared to other industries. The electricity industry must bear significant responsibility for carbon reduction in future energy transformation and economic development.

Funder

Fundamental Research Funds for the Central University of Northwest Minzu University

Fundamental Research Funds for the Central University of Southwest University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3