Study on Wax Deposition Process of Crude Oil System under Shear Flow Field Conditions

Author:

Liu Haibo1,Yang Chao1ORCID,Qi Jingjing1,Liu Chao1,Luo Haijun2,Li Bingfan3ORCID

Affiliation:

1. Technology Inspection Center of Shengli Oilfield, SINOPEC, Dongying 257000, China

2. School of Petroleum Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China

3. School of Vehicle and Energy, Yanshan University, Qinhuangdao 066004, China

Abstract

This paper adopted numerical simulation based on the MD method to research the effect of different shear rates and wax contents on wax deposition focused on crude oil. The findings indicated that under shear flow conditions, there were primarily four steps during deposition. Diffusion was the initial stage when wax diffused onto the metal surface. In the second stage, wax adsorbed onto a metal surface aligned itself parallel to the surface via Brownian motion, generating two different kinds of deposits. Subsequently, agglomerates were formed between the adsorbed deposits and the wax as a result of molecular interactions and bridging effects. Furthermore, the second and third deposited layers gradually showed peeling off and sliding under shear force. The wax deposition process was comparable for crude oil systems with varying shear rates and wax concentrations, and the deposited layer’s thickness on the metal surface was constant. The first, second, and third deposits were mainly adsorbed at 0.122 nm, 0.532 nm, and 1.004 nm away from the Fe surface, and the interaction energy between crude oil molecules and the Fe surface was mainly vdW force. The contact between Fe and wax progressively increased as the shear rate and wax content rose, promoting the wax adsorption on the metal surface and causing more of the wax to congregate in the deposited wax. The findings of the research can theoretically help a more thorough comprehension of the wax deposition.

Funder

Hebei Natural Science Foundation

National Natural Science Foundation of China

S&T Program of Qinhuangdao

Natural Science Foundation of Guangdong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3