Characterizing Hydrological Connectivity of Artificial Ditches in Zoige Peatlands of Qinghai-Tibet Plateau

Author:

Li ZhiweiORCID,Gao Peng,You Yuchi

Abstract

Peats have the unique ability of effectively storing water and carbon. Unfortunately, this ability has been undermined by worldwide peatland degradation. In the Zoige Basin, located in the northeastern Qinghai-Tibet Plateau, China, peatland degradation is particularly severe. Although climate change and (natural and artificial) drainage systems have been well-recognized as the main factors catalyzing this problem, little is known about the impact of the latter on peatland hydrology at larger spatial scales. To fill this gap, we examined the hydrological connectivity of artificial ditch networks using Google Earth imagery and recorded hydrological data in the Zoige Basin. After delineating from the images of 1392 ditches and 160 peatland patches in which these ditches were clustered, we calculated their lengths, widths, areas, and slopes, as well as two morphological parameters, ditch density (Dd) and drainage ability (Pa). The subsequent statistical analysis and examination of an index defined as the product Dd and Pa showed that structural hydrological connectivity, which was quantitatively represented by the value of this index, decreased when peatland patch areas increased, suggesting that ditches in small patches have higher degrees of hydrological connectivity. Using daily discharge data from three local gauging stations and Manning’s equation, we back-calculated the mean ditch water depths (Dm) during raining days of a year and estimated based on Dm the total water volume drained from ditches in each patch (V) during annual raining days. We then demonstrated that functional hydrological connectivity, which may be represented by V, generally decreased when patch areas increased, more sensitive to changes of ditch number and length in larger peatland patches. Furthermore, we found that the total water volume drained from all ditches during annual raining days only took a very small proportion of the total volume of stream flow out of the entire watershed (0.0012%) and this nature remained similar for the past 30 years, suggesting that during annual rainfall events, water drained from connected ditches is negligible. This revealed that the role of connected artificial ditches in draining peatland water mainly takes effect during the prolonged dry season of a year in the Zoige Basin.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference43 articles.

1. The impact of peatland drain-blocking on dissolved organic carbon loss and discolouration of water; results from a national survey

2. Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration

3. Peatland Hydrology. Draft Scientific Review;Labadz,2010

4. Quantification of ditch bank erosion in a drained forested catchment;Stenberg;Boreal Environ. Res.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3