Electrochemically Oxidized Carbon Nanotube Sheets for High-Performance and Flexible-Film Supercapacitors

Author:

Noh Jun Ho12,Choi Jimin1,Seo Hyunji1,Kim Juwan12,Choi Changsoon12

Affiliation:

1. Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Republic of Korea

2. Department of Advanced Battery Convergence Engineering, Dongguk University, 30 Pildong-ro, 1-gil, Jung-gu, Seoul 04620, Republic of Korea

Abstract

The development of flexible, high-performance supercapacitors has been a focal point in energy storage research. While carbon nanotube (CNT) sheets offer promising mechanical and electrical properties, their low electrical double-layer capacitance significantly limits their practicability. Herein, we introduce a novel approach to address this challenge via the electrochemical oxidation treatment of CNT sheets stacked on a polyethylene terephthalate substrate. This introduces oxygen-containing functional groups onto the CNT surface, thereby dramatically enhancing the pseudocapacitive effect and improving ion adsorption. Consequently, using the material in a two-electrode system increased the capacitance by 54 times compared to pristine CNT. The results of electrochemical performance characterization, including cyclic voltammograms, galvanostatic charge/discharge curves, and capacitance retention testing data, confirm the efficacy of the electrochemical oxidation approach. Furthermore, the mechanical flexibility of the electrochemically wetted CNT sheets was validated through resistance and discharge retention testing under repetitive bending (98% capacitance retention after 1000 bending cycles). The results demonstrate that electrochemically wetted CNT sheets retain their intrinsic mechanical and electrical properties while significantly enhancing the electrochemical performance (0.59 mF/cm2 or 97.8 F/g). This work represents a significant advancement in the development of flexible, high-performance supercapacitors with potential applicability to wearable electronics, flexible displays, and next-generation energy storage solutions.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3