Engineering Cell-Derived Nanovesicles for Targeted Immunomodulation

Author:

Sayyed Adil Ali1,Gondaliya Piyush1,Yan Irene K.1,Carrington James1ORCID,Driscoll Julia1,Moirangthem Anuradha1,Patel Tushar1ORCID

Affiliation:

1. Departments of Transplantation and Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA

Abstract

Extracellular vesicles (EVs) show promise for targeted drug delivery but face production challenges with low yields. Cell-derived nanovesicles (CDNVs) made by reconstituting cell membranes could serve as EV substitutes. In this study, CDNVs were generated from mesenchymal stem cells by extrusion. Their proteomic composition, in vitro and in vivo toxicity, and capacity for loading RNA or proteins were assessed. Compared with EVs, CDNVs were produced at higher yields, were comprised of a broader range of proteins, and showed no detrimental effects on cell proliferation, DNA damage, or nitric oxide production in vitro or on developmental toxicity in vivo. CDNVs could be efficiently loaded with RNA and engineered to modify surface proteins. The feasibility of generating immunomodulatory CDNVs was demonstrated by preparing CDNVs with enhanced surface expression of PD1, which could bind to PD-L1 expressing tumor cells, enhance NK and T cell degranulation, and increase immune-mediated tumor cell death. These findings demonstrate the adaptability and therapeutic promise of CDNVs as promising substitutes for natural EVs that can be engineered to enhance immunomodulation.

Funder

National Cancer Institute

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3