Computational Fluid Dynamics Simulation of Filling a Hydrogen Type 3 Tank at a Constant Mass Flow Rate

Author:

Monteiro José Miguel1ORCID,Ribeiro Leonardo12ORCID,Monteiro Joaquim12ORCID,Baptista Andresa12ORCID,Pinto Gustavo F.12ORCID

Affiliation:

1. ISEP—School of Enginnering, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal

2. INEGI—Institute of Science and Innovation in Mechanical and Industrial Engineering, 4200-465 Porto, Portugal

Abstract

Hydrogen storage in high-pressure tanks can be performed with different filling strategies. Many studies have been carried out on supplies with increasing pressure rates. The present work aims to carry out CFD numerical simulations, using Ansys Fluent®, in a type 3 tank of 70 MPa normal working pressure (NWP) using a constant flow rate, to analyze the influence of inlet key parameters such as initial temperature, mass flow rate, and material properties on the evolution of temperature, pressure, and velocity. From the analysis of the results, it was possible to discover linear relationships between the increase in the total equilibrium temperature and the final hydrogen temperature, as well as a linear increasing relationship between inlet and final temperatures when the equilibrium temperature was fixed. Considering fully adiabatic walls resulted in a significant increase in temperature with no predictable pattern. The difference between total and static temperatures found in the inlet tube decreased with the decrease in mass flow rate and subsequently the Mach number. The choice of a polymer for the tank lining led to higher temperatures when compared to an aluminum lining.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3