Multi-Step Approach for Fast Calculation of Magnetic Field in Transformer Tank Shields

Author:

Jurković Zvonimir1,Jurišić Bruno1,Župan Tomislav1ORCID

Affiliation:

1. Končar—Electrical Engineering Institute Ltd., 10000 Zagreb, Croatia

Abstract

A multi-step approach for the fast calculation of the magnetic field inside transformer tank shields, based on the 2D FEM, is presented in the paper. Due to the limitations of the 2D FEM, the proposed approach utilizes several 2D FEM models and calculates the magnetic field in multiple steps to account for the 3D geometry of the problem. In the first step, a distribution of the magnetic flux density that enters the tank shields is calculated using the quasi-3D model of the transformer. This quasi-3D model is obtained by superimposing the solution of multiple axisymmetric 2D FEM models, and assumes a considerably simplified transformer geometry. To account for the tank shield geometry that is neglected in the quasi-3D FEM model, an additional 2D FEM model with tank shields is introduced. After the distribution of the magnetic flux density that enters the tank shields is calculated, it is imposed in the final 2D FEM model with a non-linear tank shield which is used to calculate the magnetic flux density distribution inside the tank shields. The proposed approach enables a fast calculation of magnetic field distributions, both in the vertical and horizontal directions. The results of the proposed approach are compared against the 3D FEM. The relative error of the maximum magnetic flux density is under 2%, while the NRMSE of the magnetic flux density distribution within the tank shields is under 10%. The key contribution of the proposed approach is a low computation time. In the presented case study, the total computation time of the proposed approach is ~30 s, while the computation time of the 3D FEM is ~1 h. As the computation time is significantly reduced, while the accuracy is acceptable, the proposed approach can be a good alternative to the 3D FEM for design purposes. Therefore, it has industrial value.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3