Optimal Allocation of Photovoltaic-Green Distributed Generation for Maximizing the Performance of Electrical Distribution Networks

Author:

Majeed Ammar Abbas1ORCID,Abderrahim Mohamed1ORCID,Alkhazraji Afaneen Anwer2

Affiliation:

1. Department of System Engineering and Automation, University Carlos III of Madrid, Avada de la Universidad 30, 28911 Leganes, Madrid, Spain

2. Communication Engineering Department, University of Technology-Iraq, Al-Sina’a St., Baghdad 10066, Iraq

Abstract

Renewable energy sources provide an environmentally sustainable solution to meet growing energy demands. Consequently, photovoltaics (PV) is regarded as a promising form of green distributed generation (GDG). The penetration of PV-GDG into distribution networks (DNs) is crucial, presenting a significant opportunity to improve power grid quality and reduce power losses. In this study, a comprehensive investigation was conducted to determine the optimal location, number, and capacity of PV-GDG penetrations with DN to achieve these objectives. Therefore, employing the Newton–Raphson (NR) technique and particle swarm optimization (PSO) approach for case studies, the analysis focused on the IEEE 33 bus test system as a benchmark test and the Iraq–Baghdad DN at 11 kV and 0.416 kV as a real case study. The outcomes revealed that integrating 4 × 1 MW PV-GDG units in a centralized configuration at bus 13 of the 11 kV Rusafa DN in the first scenario significantly reduced power losses and alleviated voltage drops across the network. In contrast, the second scenario entailed the utilization of dispersed PV panels with a capacity of 10 kW installed on rooftops at all 400 consumer load points with a cumulative capacity of 4 MW. This approach exemplified the enhancement of DN performance by significantly maximizing the power loss reduction and minimizing the voltage drops across the buses, exceeding the results achieved in the first scenario. The software applications employed in the practical implementation of this study included the CYMDist 9.0 Rev 04 program, PVsyst 7.2.20 software, and MATLAB R2022b.

Funder

Ph.D. scholarship from the Iraqi Ministry of Electricity

RoboCity2030-DIH-CM, Madrid Robotics Digital Innovation Hub

The Community of Madrid and the European Social Funds

University Carlos III of Madrid

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3