Affiliation:
1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100811, China
Abstract
Fuel cell hybrid electric trucks have become a cutting-edge field in understanding urban traffic emissions due to their enormous potential in low-carbon areas. In order to improve the economy of fuel cell hybrid electric trucks and reduce the decline of fuel cell lifespan, this paper proposes a multi-objective energy management strategy that optimizes weight coefficients. On the basis of establishing a fuel cell battery hybrid system model, three modes of uniform speed, acceleration, and deceleration were identified through clustering analysis of vehicle speed. Reinforcement learning algorithms were used to learn the corresponding weights for different modes, which reduced the decline in fuel cell life while improving the economic efficiency. The simulation results indicate that, under the conditions of no load, half load, and full load, the truck only sacrificed 0.9–5.6%, 1.7–2.6%, and 1.2–1.6% SOC, saving 5.7–6.45%, 5.9–6.67%, and 6.1–6.67% in lifespan loss, and reducing hydrogen consumption by 3.0–7.1%, 2.8–4.4%, and 1.0–3.0%, respectively.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献