Film Cooling Modeling in a Turbine Working under the Unsteady Exhaust Flow of Pulsed Detonation Combustion

Author:

Varatharajulu Purgunan Gokkul Raj1ORCID,Asli Majid2ORCID,Nacci Teodosio3ORCID,Misul Daniela Anna3ORCID,Salvadori Simone3ORCID,Stathopoulos Panagiotis4ORCID

Affiliation:

1. Institute of Fluid Mechanics and Technical Acoustics, Technische Universität Berlin, 10623 Berlin, Germany

2. Chair of Aeroengine Design, Brandenburg University of Technology Cottbus-Senftenberg, 03046 Cottbus, Germany

3. Department of Energy (DENERG), Politecnico di Torino, 10129 Turin, Italy

4. Institute of Low Carbon Industrial Processes, German Aerospace Center (DLR), 51147 Cottbus, Germany

Abstract

Pressure gain combustors (PGCs) have demonstrated significant advantages over conventional combustors in gas turbine engines by increasing the thermal efficiency and reducing the pollution emission level. PGCs use shock waves to transfer energy which contributes to the increase in outlet total pressure. One of the major obstacles in the actual implementation of PGCs in the gas turbine cycle is the exploitation of the highly unsteady flow of the combustor outlet with the downstream turbine. Because of the higher outlet temperature from the PGCs, the turbine blade cooling becomes essential. Due to the highly fluctuating unsteady flow of PGCs, 3D CFD simulation of turbines becomes very expensive. In this work, an alternative approach of using a 1D unsteady Euler model for the turbine is proposed. One of the novel aspects of this paper is to implement the turbine blade cooling in the unsteady 1D Euler model. The main parameters required for the turbine blade cooling are the cooling air mass flow rate, temperature, and pressure. Due to the introduction of coolant flow, the blades are no longer adiabatic and the mass flow rate across the turbine is not constant. Comparing the 1D Euler results against zero-dimensional calculation and 3D CFD approach showed a very good match for both steady and unsteady simulations confirming the applicability of the 1D method.

Funder

European Union’s Horizon 2020 research and innovation programme

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3