Multi-Objective Stochastic Optimization for Determining Set-Point of Wind Farm System

Author:

Bui Van-HaiORCID,Hussain Akhtar,Nguyen Thai-ThanhORCID,Kim Hak-ManORCID

Abstract

Due to the uncertainty in output power of wind farm (WF) systems, a certain reserve capacity is often required in the power system to ensure service reliability and thereby increasing the operation and investment costs for the entire system. In order to reduce this uncertainty and reserve capacity, this study proposes a multi-objective stochastic optimization model to determine the set-points of the WF system. The first objective is to maximize the set-point of the WF system, while the second objective is to maximize the probability of fulfilling that set-point in the real-time operation. An increase in the probability of satisfying the set-point can reduce the uncertainty in the output power of the WF system. However, if the required probability increases, the set-point of the WF system decreases, which reduces the profitability of the WF system. Using the proposed method helps the WF operator in determining the optimal set-point for the WF system by making a trade-off between maximizing the set-point of WF and increasing the probability of fulfilling this set-point in real-time operation. This ensures that the WF system can offer an optimal set-point with a high probability of satisfying this set-point to the power system and thereby avoids a high penalty for mismatch power. In order to show the effectiveness of the proposed method, several case studies are carried out, and the effects of various parameters on the optimal set-point for the WF system are also analyzed. According to the parameters from the transmission system operator (TSO) and wind speed profile, the WF operator can easily determine the optimal set-point using the proposed strategy. A comparison of the profits that the WF system achieved with and without the proposed method is analyzed in detail, and the set-point of the WF system in different seasons is also presented.

Funder

Korea Electric Power Corporation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3