Author:
Dybe Simeon,Bartlett Michael,Pålsson Jens,Stathopoulos Panagiotis
Abstract
High pressure humidified cycles can combine high operational flexibility and high thermal efficiency. The current work introduces such a cycle, namely TopCycle, which provides the necessary combustion infrastructure to operate on a wide fuel variety in a steam-rich atmosphere. The cycle configuration is presented in detail, and its operation is exemplified on the basis of simulation results. Operation at design condition results in electric efficiencies higher than 50% (lower heating value (LHV)) and power densities higher than 2100 kW/kgair (referred to intake air flow). A sensitivity analysis identifies the cycle performance as a function of representative parameters, which provide the basis for future operation and design improvements. As for any gas turbine cycle, TopCycle’s electric efficiency can be effectively improved by increasing the turbine inlet temperature, optimizing the economizer heat recovery, as well as elevating the working pressure. Finally, TopCycle’s performance is compared to a state-of-the-art combined cycle (CC) at equivalent operation parameters. The TopCycle operates at an elevated electric efficiency and considerably higher power density, which can be transferred into smaller plant footprint and dimensions and thus lower investment costs at equal power output in comparison to a CC.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献