Advanced Computer Vision-Based Subsea Gas Leaks Monitoring: A Comparison of Two Approaches

Author:

Zhu Hongwei1,Xie Weikang1ORCID,Li Junjie1ORCID,Shi Jihao12ORCID,Fu Mingfu34,Qian Xiaoyuan1,Zhang He1,Wang Kaikai1,Chen Guoming1

Affiliation:

1. Centre for Offshore Engineering and Safety Technology, China University of Petroleum, Qingdao 266580, China

2. Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

3. PipeChina West Pipeline Company, Urumqi 830000, China

4. School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

Abstract

Recent years have witnessed the increasing risk of subsea gas leaks with the development of offshore gas exploration, which poses a potential threat to human life, corporate assets, and the environment. The optical imaging-based monitoring approach has become widespread in the field of monitoring underwater gas leakage, but the shortcomings of huge labor costs and severe false alarms exist due to related operators’ operation and judgment. This study aimed to develop an advanced computer vision-based monitoring approach to achieve automatic and real-time monitoring of underwater gas leaks. A comparison analysis between the Faster Region Convolutional Neural Network (Faster R-CNN) and You Only Look Once version 4 (YOLOv4) was conducted. The results demonstrated that the Faster R-CNN model, developed with an image size of 1280 × 720 and no noise, was optimal for the automatic and real-time monitoring of underwater gas leakage. This optimal model could accurately classify small and large-shape leakage gas plumes from real-world datasets, and locate the area of these underwater gas plumes.

Funder

Hubei Province unveiling project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3