An Efficient Deep Learning-Based High-Definition Image Compressed Sensing Framework for Large-Scene Construction Site Monitoring

Author:

Zeng Tuocheng1,Wang Jiajun1ORCID,Wang Xiaoling1,Zhang Yunuo1,Ren Bingyu1

Affiliation:

1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China

Abstract

High-definition images covering entire large-scene construction sites are increasingly used for monitoring management. However, the transmission of high-definition images is a huge challenge for construction sites with harsh network conditions and scarce computing resources. Thus, an effective compressed sensing and reconstruction method for high-definition monitoring images is urgently needed. Although current deep learning-based image compressed sensing methods exhibit superior performance in recovering images from a reduced number of measurements, they still face difficulties in achieving efficient and accurate high-definition image compressed sensing with less memory usage and computational cost at large-scene construction sites. This paper investigated an efficient deep learning-based high-definition image compressed sensing framework (EHDCS-Net) for large-scene construction site monitoring, which consists of four parts, namely the sampling, initial recovery, deep recovery body, and recovery head subnets. This framework was exquisitely designed by rational organization of the convolutional, downsampling, and pixelshuffle layers based on the procedures of block-based compressed sensing. To effectively reduce memory occupation and computational cost, the framework utilized nonlinear transformations on downscaled feature maps in reconstructing images. Moreover, the efficient channel attention (ECA) module was introduced to further increase the nonlinear reconstruction capability on downscaled feature maps. The framework was tested on large-scene monitoring images from a real hydraulic engineering megaproject. Extensive experiments showed that the proposed EHDCS-Net framework not only used less memory and floating point operations (FLOPs), but it also achieved better reconstruction accuracy with faster recovery speed than other state-of-the-art deep learning-based image compressed sensing methods.

Funder

Yalong River Joint Funds of the National Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3